Research Experience for Undergraduates at UNC Charlotte Sean Windt Civil and Environmental Engineering Department

A STUDY ON THE PERFORMANCE OF DEEP LAYER SUBGRADE STABILIZATION

### CONTENTS

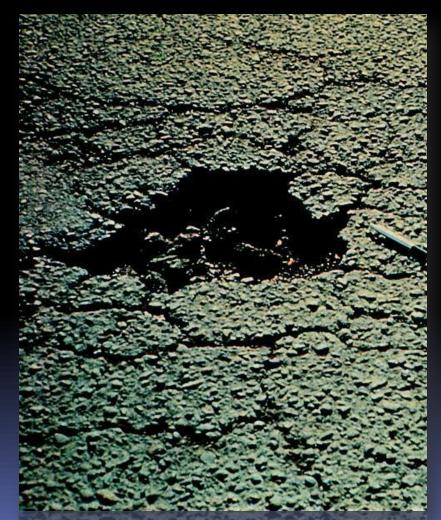
- INTRODUCTION
- LITERATURE
- PAST, PRESENT, FUTURE
- PROCESS
- RESULTS
- QUESTIONS



#### Scope of Project:

- Stabilization: a method of soil property improvement to strengthen the performance of the soil as a underlying foundation to a loaded pavement surface.
- Traditional Calcium based stabilizers:
   Portland Cement, Lime, Fly ash

# WHY STABILIZE?


- High Axle Loads
- High traffic volumes
- Antiquated roadway design
- Reduce maintenance costs
- Ride quality





### FAILURE CAUSES

- Loss of base or subgrade support
- Fatigue failure from HMA stress or stabilized layer failure
- Infiltration of moisture
- Tensile cracks (bottom-up)



**Fatigue Cracking** 

# Scope of Project NC 16 Denver, NC (NCDOT & UNCC)

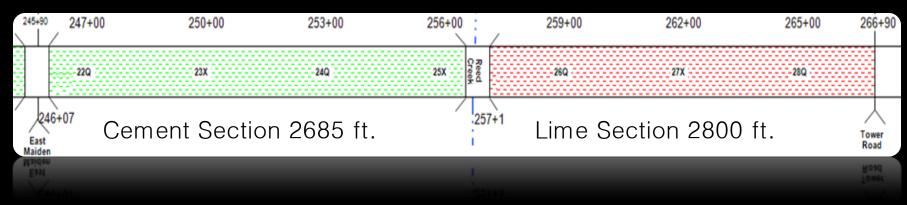


- Scope of Project : Lime
  - 2800 feet designated for Lime Stabilization
  - 4 Sections: 700 feet each
  - 16 Subsections respectively
  - 2 Control Sections @
     8"
  - 2 Deep Sections @ 12"
     & 16"

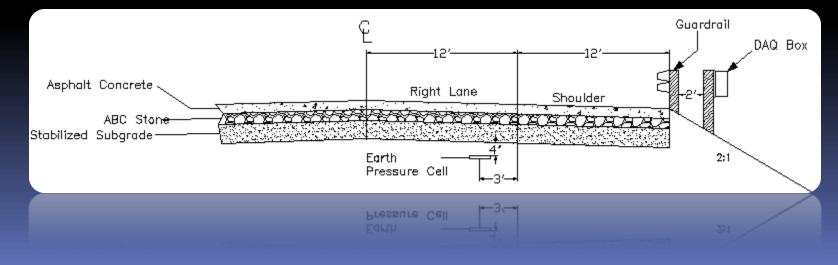
- Scope of Project : Cement
  - 2685 feet designated for Cement Stabilization
  - 4 Sections: 600, 735, 750, 600 feet in length
  - 16 subsections respectively
  - 2 Control Sections @ 7"
  - 2 Deep Sections @ 10" & 14"

#### Objectives

- Comparison of initial cost and expected life of different layer systems for pavement endurance.
- Track data of the changes in material engineering properties and field performance of the different stabilization methods and systems.
- Make a recommendation as to the most effective method of subgrade stabilization based upon pavement performance in relation to a cost benefit analysis of the studied stabilized systems.


#### Soil Modification

- Short-term cation exchange mechanism
- Flocculation of soil particles
- Reduction of Soil Plasticity
- Reduces soil swelling and shrinking tendencies
- Increase Workability


### Soil Stabilization

- Long-term Pozzolanic reactions (Calcium)
- High pH needed to solubilize silicates and aluminates from soil
- Continued flocculation and strength increase

#### NC-16 Survey Overview



#### **Cross-Section**



### LITERATURE

- Soil Classification
  - Clay or Silt: 35% or more of mass smaller than 75µm
  - Sand or Gravel: 35% or less of mass smaller than 75µm

- Subgrade: 25% or more of mass smaller than 75µm
- Base: 25% or more of mass larger than 75µm

### LITERATURE

### Lime Stabilization

- Quicklime (CaO) Exothermic reaction
- Hydrated Lime (Ca(OH)<sub>2</sub>)
- Na<sup>+</sup> < K<sup>+</sup> << Mg<sup>++</sup> <Ca<sup>++</sup>
- Ca<sup>++</sup>+OH<sup>-</sup>+SiO<sub>2</sub> (Silica) → CaSiHydrate
- Ca<sup>++</sup>+OH<sup>-</sup>+Al<sub>2</sub>O<sub>3</sub>(Alumina)→CaAlHydrate
- Flocculation & Agglomeration displaces water layer

### LITERATURE

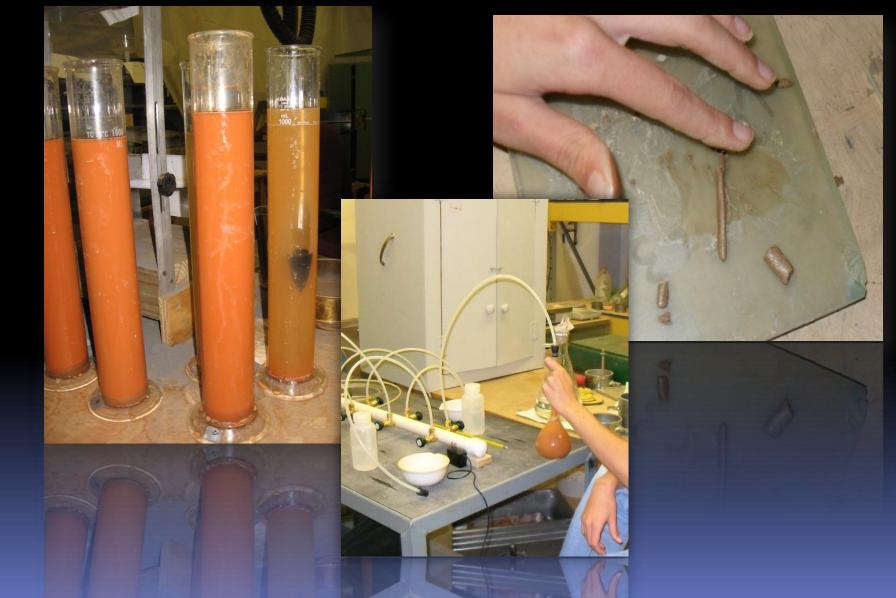
#### Cement Stabilization

- Cement provides the silica and aluminates
- Bonds under same mechanisms as lime
- Not pH dependent
- Primary structural base layer flexible pavements
- Subbase layer rigid pavements
- Used in fine or granular soils

# PAST, PRESENT, FUTURE

- Lab Testing Lime
  - Soil Classification
  - pH Testing
  - Optimal Moisture Content
  - Unconfined Compression
  - Resilient Modulus
  - Instrument Implementation




### PROCESS

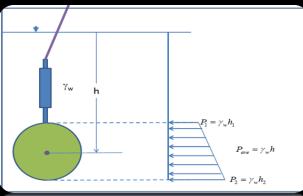






### PROCESS



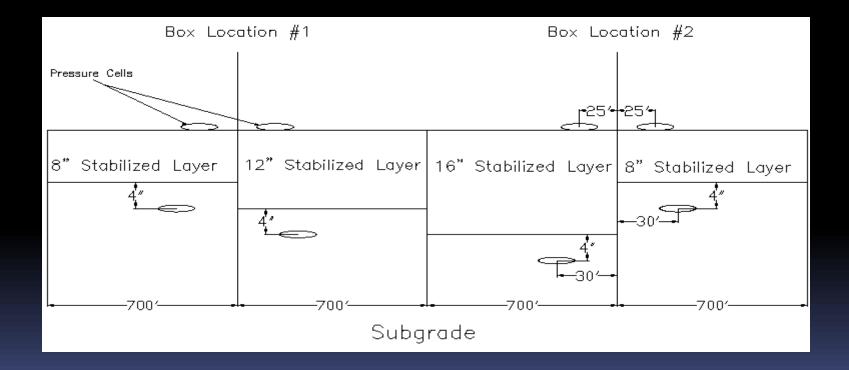

- Pressure Cell
  - Hydraulic filled plate measures change in voltage by pressure transducer



### Strain Gauges Measures the strain between base and subgrade levels



- Calibration
  - Dead Weight Cal.




- Installation
  - 14 pressure cells
    - 8 cells in subgrade
    - 6 cells in base

- Temperature Sensors
   Calibrated w/ thermometer in water
- Moisture Reflectometers
  - Tested in soil of known moisture content



#### Pressure Cell Placement



- Box Placement
  - Data acquisition
  - Data reading
  - 2 Moisture reflectometers
  - 2 Temperature sensors
  - 4 Pressure Cells



### RESULTS

- Comparative strength increase gained from lime and cement stabilization
- The resultant performance of the pavement relative to each stabilization method
- Environmental and Axle load effects on pavement and subgrade performance

### QUESTIONS

